
Sequent Voting SystemArchitecture
Overview

(Work in progress)

Author: Eduardo Robles

Document identifier: 2022-04-10-arch-1

Date: 2022-04-10

Index
1. Introduction 5

1.1. Purpose and scope 5

1.2. About 5

2. Logical View 6

2.1. Logical Architecture Diagram 6

2.2. Logical Components 6

2.2.1. Admin Console 6

2.2.2. Election Portal 6

2.2.3. Voting Booth 7

2.2.4. Election Verifier 7

2.2.5. IAM 7

2.2.6. Ballot Box 7

2.2.7. Mixnet Node 7

2.3. Actors 8

2.3.1. Election Organizer 8

2.3.2. Voter 8

2.3.3. Trustee 8

2.3.4. Auditor 8

4. Implementation View 9

4.1. Components Diagram 9

4.2. Implementation Components 10

4.2.1. Admin Console 10

4.2.2. Ballot Box 10

4.2.3. Ballot Verifier 10

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 2 of 21

4.2.4. Common UI 10

4.2.5. Deployment Tool 10

4.2.6. Election Orchestra 11

4.2.7. Election Portal 11

2.2.8. Election Verifier 11

4.2.9. FRESTQ 12

4.2.10. IAM 12

4.2.11. Mixnet 12

4.2.12. Tally Methods 12

4.2.13. Tally Pipes 13

4.2.14. Voting Booth 13

4. Physical View 14

4.1. Deployment Diagram 14

4.2. Physical Components 15

4.2.1. Client 15

4.2.2. Web Browser 15

4.2.3. Admin Console 15

4.2.4. Election Portal 15

4.2.5. Voting Booth 16

4.2.6. WAF + Reverse Proxy 16

4.2.7. Cloud Service Provider 16

4.2.8. Firewall 16

4.2.9. Load Balancer 16

4.2.10. Server 17

4.2.11. Nginx 17

4.2.12. IAM 17

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 3 of 21

4.2.13. Message Queue 17

4.2.14. IAM Celery 17

4.2.15. Memcached 18

4.2.16. Ballot Box 18

4.2.17. PostgreSQL 18

4.2.18. Election Verifier 18

4.2.19. Ballot Verifier 19

4.2.20. Data Store 19

4.2.21. Tally Pipes 19

4.2.22. Supervisor 19

4.2.23. Fail2ban 20

4.2.24. SSH Server 20

4.2.25. Bastion 20

4.2.26. TMux 20

4.2.27. Election Orchestra 20

4.2.28. Mixnet 21

4.2.29. DevOps machine 21

4.2.30. SSH Client 21

4.2.31. Deployment tool 21

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 4 of 21

1. Introduction

1.1. Purpose and scope

This document provides an architectural overview of Sequent Voting Platform using multiple

architectural views to depict different aspects of the platform.

1.2. About

The Sequent Voting Platform is an open-voting platform developed by Sequent that makes

voting more secure, transparent and accessible. It enables end-to-end verification (E2EV) of

elections as well as supports the publication of results post tabulation. Under the hood, the

Sequent Online Voting Platform leverages ElGamal encryption to ensure that votes recorded

by electronic systems of any type remain encrypted, secure, and secret. Results can be

published online or made available to third-party organizations for secure validation, and

allow individual voters to confirm their votes were correctly counted.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 5 of 21

2. Logical View

Presents a high level view including only the most important components and entities. Its

main goal is to provide an understandable overall picture of the system.

2.1. Logical Architecture Diagram

2.2. Logical Components

2.2.1. Admin Console

The frontend web-based administrative component. It’s used for set-up and configuration of

an election, including all election metadata, performs credential management in connection to

the IAM backend, manages the election lifecycle including start and stop of the election,

generation of election and participation reports.

2.2.2. Election Portal

The frontend web-based component that serves as the public access to the election process

for voters and observers. It can show election results, election information, election record

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 6 of 21

and allows voters to authenticate and access the verifiable election record and the different

election verification methods.

2.2.3. Voting Booth

The frontend web-based software component used by voters to cast their ballots. This

software runs on the voter’s client device and displays a graphical user interface through

which voters make their selections.

2.2.4. Election Verifier

Allows voters and third-parties to perform E2E verification on the election (cast-as-intended

verifiability, recorded-as-cast and counted-as-recorded) using the election record provided

through the election portal.

2.2.5. IAM

The IAM is the backend software component used to authenticate voters such that they can

access the voting booth as eligible participants as determined by the Election Authority.

2.2.6. Ballot Box

The backend service that collects ballots. This service also interconnects with Trustee’s

Mixnet nodes to perform the anonymization and decryption of the votes, applying first vote

cleansing, and performing the tally of the decrypted votes.

2.2.7. Mixnet Node

Backend service that jointly creates public keys, performs ballot shuffling and decryption.

Most of the system cryptography is contained in this code. Since Mixnet nodes handle

sensitive information, they are administered by multiple Trustees.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 7 of 21

2.3. Actors

The most significant actors in an electoral process are listed below.

2.3.1. Election Organizer

The organization or institution wishing to carry out an electoral process. Election organizers

use the Admin Console to manage the electoral process.

2.3.2. Voter

The people that the Election Authority has determined are eligible to participate in the

electoral process as voters. Voters use the Voting Booth to cast their votes.

2.3.3. Trustee

A person or organization entrusted with sensitive information in order to safeguard ballot

privacy. Trustees participate in key steps of the cryptographic protocol by managing Mixnet

Nodes. Typically, trustees are either independent by themselves or independent among each

other.

2.3.4. Auditor

A person or organization that will perform different integrity and compliance verification

procedures on the system and the election artifacts, including verification of election results,

system logs or end-to-end verifiable proofs. Accredited independent auditors, researchers or

even voters or members of the public can all perform some audits on Sequent’s E2EV system.

Auditors use the Election Verifier component to perform these verifications, and also the

Election Portal to access the election record.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 8 of 21

4. Implementation View

This view illustrates a system from a programmer's perspective, dividing the system into

different software components. In our case, each distinct component has a corresponding

Github Repository. This view only includes components directly developed by Sequent and

excludes third-party components.

4.1. Components Diagram

The connections between the components depict the software dependency of one

component of another.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 9 of 21

4.2. Implementation Components

4.2.1. Admin Console

Repository: https://github.com/sequentech/admin-console

The frontend web-based administrative component. It’s used for set-up and configuration of

an election, including all election metadata, performs credential management in connection to

the IAM backend, manages the election lifecycle including start and stop of the election,

generation of election and participation reports.

4.2.2. Ballot Box

Repository: https://github.com/sequentech/ballot-box

The backend service that collects and stores cast ballots, written in Scala. This service

interconnects with Trustee’s Mixnet nodes to perform the anonymization and decryption of

the votes applying first vote cleansing, and performs the the tally of the decrypted votes.

4.2.3. Ballot Verifier

Repository: https://github.com/sequentech/ballot-verifier

Reference cast-as-intended verifier written in C++. Allows voters to audit spoiled ballots, and

performing the audit part of the Benaloh cast-or-audit mechanism.

4.2.4. Common UI

Repository: https://github.com/sequentech/common-ui

Common user interface library written in Javascript and based in AngularJS. Includes

functions and components shared by the other three user-interface components: the Voting

Booth, the Election Portal and the Admin Console.

4.2.5. Deployment Tool

Repository: https://github.com/sequentech/deployment-tool

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 10 of 21

https://github.com/sequentech/admin-console
https://github.com/sequentech/ballot-box
https://github.com/sequentech/ballot-verifier
https://github.com/sequentech/common-ui
https://github.com/sequentech/deployment-tool

Deployment ansible scripts. It serves to deploy the complete system for both master and

slave machines, and also for trustee servers.

4.2.6. Election Orchestra

Repository: https://github.com/sequentech/election-orchestra

Election process orchestrator to create election keys and launch the tally. It’s written in Python

and Flask. It’s the backend service being run by Trustee’s Mixnet Nodes that interfaces

between the Ballot Box and the Mixnet component. The Ballot Box requests the creation of

the election keys or the launch of the anonymization and decryption of the votes of an

election, and the Election Orchestra communicates one Mixnet Node with another to launch

the Mixnet.

4.2.7. Election Portal

Repository: https://github.com/sequentech/election-portal

The frontend web-based component that serves as the public access to the election process

for voters and observers. It’s written in Javascript using AngularJS. It’s a static SPA (Single

Page Application) that interfaces through API calls with the Ballot Box and the IAM

components.

It can show election results, election information, election record and allows voters to

authenticate and access the verifiable election record and the different election verification

methods.

2.2.8. Election Verifier

Repository: https://github.com/sequentech/election-verifier

Reference implementation of the election verifier. Allows voters and third-parties to perform

the universal verification of the recorded-as-cast and counted-as-recorded properties of an

election using the election record provided through the election portal. It uses the Mixnet

code for some cryptographic primitives and the Tally Pipes to perform verification of the

election results. It’s a mix of Scala, Python and Bash code.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 11 of 21

https://github.com/sequentech/election-orchestra
https://github.com/sequentech/election-portal
https://github.com/sequentech/election-verifier

4.2.9. FRESTQ

Repository: https://github.com/sequentech/frestq

FRESTQ implements a federated rest task queue. It allows the orchestration of tasks with

different peers with no central coordination authority. It’s the low-level library used internally

by election-orchestra to operate and communicate between Mixnet nodes.

It's developed in Python with Flask and SQLAlchemy with PostgreSQL. It uses its own

message protocol for communication of tasks and updates between any two peers.

4.2.10. IAM

Repository: https://github.com/sequentech/iam

Backend component that provides authentication and authorization primitives. It’s used to

authenticate and authorize any user within the system and manage what permissions those

users have. It’s implemented in Python using Django and PostgreSQL. It also provides a Task

Queue for slower tasks using Celery and RabbitMQ, for example to send email and SMS

messages with OTP tokens.

4.2.11. Mixnet

Repository: https://github.com/sequentech/mixnet

A verifiable re-encryption mixnet, written in Java. Backend service that jointly creates public

keys, performs ballot shuffling and decryption. Most of the system cryptography is contained

in this code.

4.2.12. Tally Methods

Repository: https://github.com/sequentech/tally-methods

Library that provides the implementation of different voting systems supported by the

platform, like STV or Borda. Written in Python. Used by the Tally Pipes module to calculate

election results.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 12 of 21

https://github.com/sequentech/frestq
https://github.com/sequentech/iam
https://github.com/sequentech/mixnet
https://github.com/sequentech/tally-methods

4.2.13. Tally Pipes

Repository: https://github.com/sequentech/tally-pipes

Python application that calculates election results using a pipeline. It’s used by Ballot Box to

perform the tally. It allows for complex tallying including vote consolidation, application of

tie-breaker rules, incorporation of paper-ballot tally sheets into hybrid election results and

application of gender or other parity constraints.

4.2.14. Voting Booth

Repository: https://github.com/sequentech/voting-booth

The frontend web-based software component used by voters to cast their ballots. This

software runs on the voter’s client device and displays a graphical user interface through

which voters make their selections. It’s written in Javascript using AngularJS. It’s a static SPA

(Single Page Application) that interfaces through API calls with the Ballot Box and the IAM

components.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 13 of 21

https://github.com/sequentech/tally-pipes
https://github.com/sequentech/voting-booth

4. Physical View

Infrastructure point of view of the application. It describes the deployment of application

modules in production and the technical components involved, including third party

components and services.

4.1. Deployment Diagram

The deployment diagram shows:

- Physical nodes: the hardware or physical components. They can be virtual machines,

a datacenter or a cloud provider.

- Services: Software components that run as a service inside each node.

- Storage Services: Database or filesystem storage device inside a physical node.

- Connections: How the different components are connected.

- 3rd-party services: Services provided by third parties that are part of the deployment.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 14 of 21

4.2. Physical Components

4.2.1. Client

The hardware device of the final user. The final user might be a Voter, an Election Organizer,

an Auditor or any Third-party Observer. The hardware device can be a PC, Laptop, Tablet or

Mobile Phone.

4.2.2. Web Browser

The browser agent of the final user. This can be Google Chrome, Safari or Mozilla Firefox,

among others.

4.2.3. Admin Console

The frontend web-based administrative component. It’s used for set-up and configuration of

an election, including all election metadata, performs credential management in connection to

the IAM backend, manages the election lifecycle including start and stop of the election,

generation of election and participation reports.

This component appears depicted both inside the Client’s Web Browser, where it’s run, and

within the Server, where it’s provided and served from through Nginx.

4.2.4. Election Portal

The frontend web-based component that serves as the public access to the election process

for voters and observers. It can show election results, show election information, election

record and allows voters to authenticate and access the verifiable election record and the

different election verification methods.

This component appears depicted both inside the Client’s Web Browser, where it’s run, and

within the Server, where it’s provided and served from through Nginx.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 15 of 21

4.2.5. Voting Booth

The frontend web-based software component used by Voters to cast their ballots. This

software runs on the voter’s client device and displays a graphical user interface through

which Voters make their selections.

This component appears depicted both inside the Client’s Web Browser, where it’s run, and

within the Server, where it’s provided and served from through Nginx.

4.2.6. WAF + Reverse Proxy

Third-party service that implements a Web Application Firewall and Reverse Proxy Cache. It

provides DDoS attack mitigation, being the first line of defense. In many instances this

third-party service is used to provide TLS session termination. It is typically provided by

services like CloudFlare, Akamai or Amazon CloudFront.

4.2.7. Cloud Service Provider

The cloud service provider is a third-party service provider that provides access and

management services to Virtual Machines and other physical hardware in which the

deployment will be performed. This can be Amazon Web Services, Google Cloud, Microsoft

Azure, Deutsche Telekom Cloud or even a service for a datacenter provided directly by the

client.

4.2.8. Firewall

The Cloud Service Provider provides a managed firewall to restrict access by port and

protocol to specific machines.

4.2.9. Load Balancer

A Load Balancer service managed by the Cloud Service provider. Depending on the

requirements of the deployment the firewall might be directly to the “master” Server and high

availability is provided in a 100% manual fashion, for small-scale elections where load

balancing is not required.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 16 of 21

4.2.10. Server

Server physical nodes run all the backend services to which the final users connect directly to.

The deploy-tool ansible scripts are run in these nodes to install, configure and deploy all

these services. For any deployment at least one master server is required, plus any number of

slave servers. Servers are typically virtualized Ubuntu 20.04 LTS machines.

4.2.11. Nginx

Web server that acts as an intermediary between HTTPS traffic and the backend services

such as the IAM and the Ballot Box. It also serves static content such as the election artifacts

and the front-end Single Page Applications: the Admin Console, the Voting Booth and the

Election Portal. Nginx is also configured for reverse-caching and rate-limiting requests as

additional measures for DDoS attack mitigation and increased load performance.

4.2.12. IAM

The IAM is an API backend service used to authenticate voters such that they can access the

voting booth as an eligible participant as determined by the Election Authority. It only

executes tasks that can be executed immediately, deferring slower and more complex tasks

to the IAM Celery background service. The IAM connects to the PostgreSQL database where

all the data models of this service are stored. If the node running the IAM is a slave node, it

connects to the master node to allow read-write queries.

4.2.13. Message Queue

The celery message queue used to send tasks from the IAM to the IAM celery background

service is provided by RabbitMQ. The queues are local to each Server node, which allows for

better scaling.

4.2.14. IAM Celery

Service providing the execution of longer-running tasks related to the IAM. It’s an integral part

of the IAM software component and it’s also written with Django, Python and PostgreSQL, but

it is run as another background backend service, connected to the IAM through the usage of

a local Celery message broker. It interacts with third-party services such as an SMS Sender

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 17 of 21

service or an Email Sender service, and also connects to the Ballot Box to launch some tasks

there.

4.2.15. Memcached

Memcached is a general-purpose distributed memory-caching system used by the Ballot Box

service. The memcached instances of the different Servers are connected through each other

using UDP to maintain their local caches in sync.

4.2.16. Ballot Box

The API backend service that collects ballots. This service also interconnects with Trustee’s

servers Election Orchestra service to perform the anonymization and decryption of the votes

applying first vote cleansing, and launches the the tally of the decrypted votes using the Tally

Pipes application. Once the tally is complete, it generates the election record and stores it in

the Data Store. Election configuration and cast ballots are stored in a PostgreSQL database,

and API queries are cached using memcached.

4.2.17. PostgreSQL

Relational database management service used within Server and Trustee physical nodes to

reliably store the data of other services like the Ballot Box, the IAM and Election Orchestra. In

Server nodes, PostgreSQL is typically used in a master-slave configuration, in streaming

replication mode using repmgr. Three different kinds of backups are configured to be

performed within each physical node: archived SQL Dump snapshots, WAL backups and

continuous archiving of the WAL files.

4.2.18. Election Verifier

Reference implementation of the election verifier. Allows Voters and third-parties to perform

the universal verification of the recorded-as-cast and counted-as-recorded properties of an

election using the election record provided through the election portal. It uses the Mixnet

code for some cryptographic primitives and the Tally Pipes to perform verification of the

election results. It’s a mix of Scala, Python and Bash code.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 18 of 21

This component appears depicted both inside the Client, where it can be run, and within the

Server, where it’s provided and served from through Nginx.

4.2.19. Ballot Verifier

Reference cast-as-intended verifier written in C++. Allows Voters to audit spoiled ballots,

performing the audit part of the Benaloh cast-or-audit mechanism. It’s executed in the Client

device.

4.2.20. Data Store

Both the Server and the Trustee Machine make use of a Data Store. These data stores are

simply directories within the filesystem of the machines. In the case of the Server physical

nodes, the datastore stores the election record, the election results in different formats like

JSON, text and PDF, and also the dump of the encrypted ballots that is sent to the Trustee

Machines to perform the Shuffling and Decryption process within the Mixnet. As Server nodes

are typically configured in a Master-Slave setting, this Data Store is replicated periodically

using rsync to the slaves. In the case of the Trustee Server, the Election Orchestra uses the

Datastore to store both the private keys and all the binary information generated by the

Mixnet.

4.2.21. Tally Pipes

Python application that calculates election results using a pipeline. It’s used by Ballot Box to

perform the tally. It allows for complex tallying including vote consolidation, application of

tie-breaker rules, incorporation of paper-ballot tally sheets into hybrid election results and

application of gender or other parity constraints.

4.2.22. Supervisor

Supervisor is a client/server system that allows its users to monitor and control a number of

processes on UNIX-like operating systems. It’s used to manage and launch the unix

processes related to Election Orchestra, the Ballot Box, the IAM and IAM Celery within the

Server and Trustee’s physical nodes. Supervisor is responsible for log rotation and log

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 19 of 21

management of these applications and also configures the number of unix processes to be

launched for each of these services.

4.2.23. Fail2ban

Intrusion prevention service being run within the physical nodes that protects computer

servers from brute-force attacks. Processes server logs from Nginx and SSH and is configured

to manage iptables rules to block connections stemming from attackers.

4.2.24. SSH Server

Service that provides remote login and command-line execution within the Physical nodes.

Direct access to production machines (Servers and Trustee Servers) from the Internet is not

allowed. Only access through the Bastion physical node is provided to specific personnel and

using secure cryptographic keys.

4.2.25. Bastion

The Bastion physical node is the only server that accepts connection from the outside. These

connections are rate-limited using Fail2ban and only the DevOps team has access to the

Bastion node. SSH access is configured to only allow the usage of approved secure public

keys.

4.2.26. TMux

Terminal multiplexer used in the Bastion node to automate having different sessions to the

different nodes for easy management and review, and saving long standing sessions without

losing the state when disconnecting from an ssh session.

4.2.27. Election Orchestra

Election process orchestrator to create election keys and launch the tally. Runs in the Trustee

nodes. It’s written in Python and Flask. It’s the backend service being run by Trustee’s Mixnet

Nodes that interfaces between the Ballot Box and the Mixnet component. The Ballot Box

requests the creation of the election keys or the launch of the anonymization and decryption

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 20 of 21

of the votes of an election, and the Election Orchestra communicates one Mixnet Node with

another to launch the Mixnet.

4.2.28. Mixnet

A verifiable re-encryption mixnet, written in Java. It’s a backend service that runs in the

Trustee physical nodes launched and managed by the Election Orchestra service to jointly

create public keys and perform ballot shuffling and decryption. Most of the system

cryptography is contained in this code. Generated artifacts are stored in the local filesystem

using the Data Store. The Mixnet service of the trustees needs to communicate with each

other. The Mixnet does this intra-communication using both a TCP port to communicate all the

data and an UDP port for fast signaling.

4.2.29. DevOps machine

This is the PC or laptop machine of the DevOps operators managing the deployment.

4.2.30. SSH Client

The SSH Client is used both in the DevOps machine and in the Bastion physical node.

4.2.31. Deployment tool

Deployment ansible scripts. It serves to deploy the complete system for both Server and

Trustee Server physical nodes.

2022-04-10-arch-1 Sequent Architecture Overview (WIP) Page 21 of 21

